Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo
نویسندگان
چکیده
In vivo whole-cell recordings revealed that during repeated stimulation, synaptic responses to deflection of facial whiskers rapidly adapt. Extracellular recordings in the somatosensory thalamus revealed that part of the adaptation occurs subcortically, but because cortical adaptation is stronger and recovers more slowly, cortical mechanisms must also contribute. Trains of sensory stimuli that produce profound sensory adaptation did not alter intrinsic membrane properties, including resting membrane potential, input resistance, and current-evoked firing. Synaptic input evoked via intracortical stimulation was also unchanged; however, synaptic input from the somatosensory thalamus was depressed by sensory stimulation, and this depression recovered with a time course matching that of the recovery of sensory responsiveness. These data strongly suggest that synaptic depression of thalamic input to the cortex contributes to the dynamic regulation of neuronal sensitivity during rapid changes in sensory input.
منابع مشابه
Short-term depression in thalamocortical synapses of cat primary visual cortex.
Neurons in primary visual cortex exhibit several nonlinearities in their responses to visual stimuli, including response decrements to repeated stimuli, contrast-dependent phase advance, contrast saturation, and cross-orientation suppression. Thalamocortical synaptic depression has been implicated in these phenomena but has not been examined directly in visual cortex in vivo. We assessed depres...
متن کاملLong-Term Depression at Thalamocortical Synapses in Developing Rat Somatosensory Cortex
Sensory experience during an early critical period guides the development of thalamocortical circuits in many cortical areas. This process has been hypothesized to involve long-term potentiation (LTP) and long-term depression (LTD) at thalamocortical synapses. Here, we show that thalamocortical synapses in rat barrel cortex can express LTD, and that LTD is most readily induced during a developm...
متن کاملDepression at Thalamocortical Synapses The Key for Cortical Neuronal Adaptation?
Neuronal adaptation to repetitive sensory stimuli is ubiquitous in the mammalian cortex. Despite its prevalence, the cellular mechanisms underlying this basic physiological property remain a matter of dispute. In this issue of Neuron, Chung et al. provide conclusive evidence that depression of thalamocortical synapses may play a significant role in the expression of neuronal adaptation in the r...
متن کاملCortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses.
The thalamus serves as a gate that regulates the flow of sensory inputs to the neocortex, and this gate is controlled by neuromodulators from the brainstem reticular formation that are released during arousal. Here we show in rats that sensory-evoked responses were suppressed in the neocortex by activating the brainstem reticular formation and during natural arousal. Sensory suppression occurre...
متن کاملCortical metabotropic glutamate receptors contribute to habituation of a simple odor-evoked behavior.
Defining the circuits that are involved in production and cessation of specific behaviors is an ultimate goal of neuroscience. Short-term behavioral habituation is the response decrement observed in many behaviors that occurs during repeated presentation of non-reinforced stimuli. Within a number of invertebrate models of short-term behavioral habituation, depression of a defined synapse has be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 34 شماره
صفحات -
تاریخ انتشار 2002